To The Top

The header image is the default header image for the site.

John J. Tanner

John J. Tanner

Professor of Biochemistry

Biochemistry, Chemistry,

tannerjj@missouri.edu

573-884-1280

Lab website link

Education

Degree School Location Major
BS University of Missouri Columbia, Mo. Chemistry
PhD Brown University Providence, R.I. Chemistry

Research description

We study protein structure and its relationships to protein function at the molecular and cellular levels.  The general term that is used for our brand of research is “structural biology”.  Common to all of our work is a focus on understanding how biomolecules recognize and engage one another. Biomolecular recognition is important because virtually all of biological chemistry occurs when two or more molecules come together to effect a reaction or transmit a signal.  For example, enzymes must recognize their natural substrates from the myriad of other molecules in living cells, while transcriptional repressors must recognize a specific DNA sequence to control gene expression.

We employ a variey of experimental and computational methods.  Our main experimental tool is X-ray crystallography, which provides high resolution three-dimensional structures of proteins.  High resolution structural information is indispensable for understanding how proteins function.  For example, structures of enzymes with substrates or substrate-like compounds bound in the active site inform us about substrate recognition, which provides insight into the chemical mechanism.   Furthermore, crystal structures of protein-ligand complexes facilitate the design of new enzyme inhibitors.  Such inhibitors represent lead compounds for drug development, thus protein crystallography plays an important role in the early stages of drug discovery.  We also supplement our crystallographic work with a variety of other approaches, including small-angle X-ray scattering (SAXS), site-directed mutagenesis, kinetics measurements, analytical ultracentrifugation, isothermal titration calorimetry, and a variety of computational methods.

Currently Active Research Projects

Substrate channeling in proline catabolic enzymes. This project is supported by NIH grant R01GM065546.

Functional switching in proline metabolism. This project is funded by NIH grant R01GM061068.

Structural studies of UDP-galactopyranose mutase, a novel target for the design of anti-fungal drugs and drugs to treat tropical neglected diseases.
This project is supported by NIH grant R01GM094469.

Selected publications

E.M. Christensen, A.N. Bogner, A. Vandekeere, G.S. Tam, S.M. Patel, D. F. Becker, S.-M. Fendt, and J.J. Tanner
In Crystallo Screening for Proline Analog Inhibitors of the Proline Cycle Enzyme PYCR1
J. Biol. Chem. 2020, Accepted (26-Oct-2020) PubMed Abstract

D.A. Korasick and J.J. Tanner Impact of missense mutations in the ALDH7A1 gene on enzyme structure and catalytic function Biochimie, 2020 Sep 18;S0300-9084(20)30222-4. doi: 10.1016/j.biochi.2020.09.016. PubMed Abstract

S.M. Patel, T.G. Smith, M.D. Morton, K.M. Stiers, J. Seravalli, S.J. Mayclin, T.E. Edwards, J.J Tanner, D.F. Becker Cautionary tale of using tris(alkyl)phosphine reducing agents with NAD +-dependent enzymes
Biochemistry, 2020, Sep 15;59(36):3285-3289. doi: 10.1021/acs.biochem.0c00490. PubMed Abstract

A.C. Campbell, K.M. Stiers, J.S. Martin Del Campo, R. Mehra-Chaudhary,  P. Sobrado and J.J. Tanner Trapping conformational states of a flavin-dependent N-monooxygenase in crystallo reveals protein and flavin dynamics
J. Biol. Chem. 2020, Sep 18;295(38):13239-13249. doi: 10.1074/jbc.RA120.014750. PubMed Abstract

J.W. Wyatt, D.A. Korasick, I.A. Qureshi, A.C. Campbell, K.S. Gates, and J.J. Tanner Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1 Arch. Biochem. Biophys. 2020 Sep 30;691:108477. doi: 10.1016/j.abb.2020.108477. PubMed Abstract

H. Valentino, A.C. Campbell, J.P. Schuermann, N. Sultana, H.G. Nam, S. LeBlanc, J.J. Tanner, and P. Sobrado
Structure and function of a flavin-dependent S-monooxygenase from garlic (Allium sativum)
J. Biol. Chem.  2020, Aug 7;295(32):11042-11055. doi: 10.1074/jbc.RA120.014484. PubMed Abstract

Chen C, Hou J, Tanner JJ, & Cheng J. Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis
Int. J. Mol. Sci. 2020 Apr 20;21(8):E2873.  doi: 10.3390/ijms21082873. PubMed Abstract

Campbell AC, Becker DF, Gates KS, & Tanner JJ. Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate ACS Chem Biol. 2020 Apr 17;15(4):936-944.  doi: 10.1021/acschembio.9b00935. [Epub 2020 Mar 18] PubMed Abstract

Korasick, D.A, Kandoth, P.K., Tanner, J.J., Mitchum, M.G., and Beamer, L.J. Impaired folate binding of serine hydroxymethyltransferase 8 from soybean underlies resistance to the soybean cyst nematode. J Biol Chem. 2020 Mar 13;295(11):3708-3718.  doi: 10.1074/jbc.RA119.012256.  [Epub 2020 Feb 2] PubMed Abstract

Boechi L, de Oliveira CA, Da Fonseca I, Kizjakina K, Sobrado P, Tanner JJ, McCammon JA. Substrate-dependent dynamics of UDP-galactopyranose mutase: Implications for drug design. Protein Sci. (2013).

T.A. Pemberton and J.J. Tanner Structural basis of substrate selectivity of Δ1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): Semialdehyde chain length. Arch. Biochem. Biophys. (2013) Accepted.

Min Luo, R.K. Singh, and J.J. Tanner Structural Determinants of Oligomerization of 1-Pyrroline-5-Carboxylate Dehydrogenase: Identification of a Hexamerization Hot Spot. J. Mol. Biol. 425(17):3106-3120 (2013).

Zhu W, Haile AM, Singh R, Larson JD, Smithen D, Chan JY, Tanner JJ, Becker DF. Involvement of the β3-α3 loop of the Proline Dehydrogenase Domain in Allosteric Regulation of Membrane Association of Proline Utilization A. Biochemistry 52(26):4482-9 (2013).

K. Kizjakina, J. J. Tanner, and P. Sobrado Targeting UDP-Galactopyranose Mutases from Eukaryotic Human Pathogens. Current Pharmaceutical Design 19(14):2561-73 (2013).

Link to all publications