To The Top

The header image is the default header image for the site.

John Cannon

John Cannon

Associate Professor of Molecular Microbiology & Immunology, Genetics Area Program Chair

Molecular Microbiology & Immunology,

(573) 882-2780

Fields of Interest:

  • Signal transduction
  • Molecular genetics
  • Protein molecular dynamics


  • B.S. 1978, University of Illinois-Urbana
  • Ph.D. 1983, University of Wisconsin-Madison
  • Post-doc 1987, University of Pennsylvania

Research Statement

Protein phosphorylation is a well-studied post-translational modification that regulates many aspects of protein function. Dr. Cannon uses a combination of powerful yeast molecular genetic techniques and computer simulations to decipher protein phosphorylation regulation from the pathway to atomic level descriptions. Dr. Cannon uses classical yeast genetics to identify protein phosphatase-1 (PP1) and a critical PP1 regulator, I2, based on their control of glycogen metabolism. Further biochemical analysis showed that I2 modulates PP1 function in yeast like all eukaryotic cells by its phosphorylation. I2 phosphorylation activates the PP1-I2 protein phosphatase activity without dissociation. Computer simulations of PP1-I2 molecular dynamics provide atomic level data about how phosphorylation in the unstructured I2 communicates with the I2 region near PP1 active site. This analysis has uncovered a novel method of phosphorylation control that does not exploit the phosphate charge.


Cannon, JF. Novel phosphorylation-dependent regulation in an unstructured protein. Proteins 88:366-384 (2020)

Ghosh, A and J Cannon. 2013.  Analysis of protein phosphatase-1 and aurora protein kinase suppressors reveals new aspects of regulatory protein function in Saccharomyces cerevisiae PLoS One. 2013 Jul 22;8(7):e69133. doi: 10.1371/journal.pone.0069133

Cannon, JF.  2012.  How phosphorylation activates the protein phosphatase-1 • inhibitor-2 complex.  Biochim Biophys Acta. 1834:71-86.

Cannon, JF. 2010. Function of protein phosphatase-1, Glc7, in Saccharomyces cerevisiae. Adv. App. Microbiol. 73: 27-58.

Thamburan, S., Klaasen, J., Mabusela, WT, Cannon JF, Folk, W, and Q Johnson. 2006. Tulbaghia alliacea phytotherapy: A potential anti-infective remedy for candidiasis. Phytother Res 20: 844-850.

Tan YS, PA Morcos, and JF Cannon. 2003. Pho85 phosphorylates the glc7 protein phosphatase regulator glc8 in vivo. J Biol Chem. 278(1):147-153.

Nigavekar SS, YS Tan, and JF Cannon. 2002. Glc8 is a glucose-repressible activator of Glc7 protein phosphatase-1. Arch Biochem Biophys. 404(1):71-79.

Nigavekar S and JF Cannon. 2002. Characterization of genes that are synthetically lethal with ade3 or leu2 in Saccharomyces cerevisiae. Yeast. 19:115-122.

De Silva-Udawatta MN and JF Cannon. 2001. Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation. Mol. Micro. 40:1345-1356.

Zheng J, M Khalil and JF Cannon. 1999. Glc7p protein phosphatase inhibits expression of glutamine-fructose-6-phosphate transaminase from GFA1. J. Biol. Chem. 275:18070-18078.

Ramaswamy N.T., L. Li, M. Khalil, JF Cannon. 1998. Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase. Genetics. 149(1):57-72.

Connor J.H., H.N. Quan, N.T. Ramaswamy, L. Zhang, S. Barik, J. Zheng, JF Cannon, E.Y. Lee, S. Shenolikar. 1998. Inhibitor-1 interaction domain that mediates the inhibition of protein phosphatase-1. J Biol Chem. 273(42):27716-27724.

Dalley, B.K. and JF Cannon. 1996. Novel, activated RAS mutations alter protein-protein interactions. Oncogene. 13(6):1209-1220.

Cannon JF, Pringle JR, Fiechter A, Khalil M. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 136:485-503 (1994).

Thon VJ, Khalil M, Cannon JF. Isolation of human glycogen branching enzyme cDNAs by screening complementation in yeast. J Biol Chem 268:7509-7513 (1993).

Cannon JF, Tatchell K. Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 7:2653-2663 (1987).

Cannon JF, Gibbs JB, Tatchell K. Suppressors of the ras2 mutation in Saccharomyces cerevisiae. Genetics 113:247-264 (1986).

Sullivan M, Cannon JF, Webb FH, Bock RM. Antisuppressor mutation in Escherichia coli defective in the biosynthesis of 5-methylaminomethyl-2-thiouridine. J Bacteriol 161:368-376 (1984)